The basic reproduction number obtained from Jacobian and next generation matrices - A case study of dengue transmission modelling

نویسنده

  • Hyun Mo Yang
چکیده

The basic reproduction number is a key parameter in mathematical modelling of transmissible diseases. From the stability analysis of the disease free equilibrium, by applying Routh-Hurwitz criteria, a threshold is obtained, which is called the basic reproduction number. However, the application of spectral radius theory on the next generation matrix provides a different expression for the basic reproduction number, that is, the square root of the previously found formula. If the spectral radius of the next generation matrix is defined as the geometric mean of partial reproduction numbers, however the product of these partial numbers is the basic reproduction number, then both methods provide the same expression. In order to show this statement, dengue transmission modelling incorporating or not the transovarian transmission is considered as a case study. Also tuberculosis transmission and sexually transmitted infection modellings are taken as further examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mathematical Model for Transmission Dynamics of Hepatitus C Virus with Optimal Control Strategies

An epidemic model with optimal control strategies was investigated for Hepatitus C Viral disease that can be transmitted through infected individuals. In this study, we used a deterministic compartmental model for assessing the effect of different optimal control strategies for controlling the spread of Hepatitus C disease in the community. Stability theory of differential equations is us...

متن کامل

Mathematical Model of Novel COVID-19 and Its Transmission Dynamics

In this paper, we formulated a dynamical model of COVID-19 to describe the transmission dynamics of the disease. The well possedness of the formulated model equations was proved. Both local and global stability of the disease free equilibrium and endemic equilibrium point of the model equation was established using basic reproduction number. The results show that, if the basic reproduction numb...

متن کامل

Stability ‎a‎nalysis of the transmission dynamics of an HBV model

‎Hepatitis B virus (HBV) infection is a major public health problem in the world today‎. ‎A mathematical model is formulated to describe the spread of hepatitis B‎, ‎which can be controlled by vaccination as well as treatment‎. ‎We study the dynamical behavior of the system with fixed control for both vaccination and treatment‎. ‎The results shows that the dynamics of the model is completely de...

متن کامل

Modeling Impact of Temperature and Human Movement on the Persistence of Dengue Disease

Dengue is a vector-borne infectious disease endemic in many parts of the world. The disease is spreading in new places due to human movement into the dengue disease supporting areas. Temperature is the major climatic factor which affects the biological processes of the mosquitoes and their interaction with the viruses. In the present work, we propose a multipatch model to assess the impact of t...

متن کامل

Follow up estimation of Aedes aegypti entomological parameters and mathematical modellings

The dengue virus is a vector-borne disease transmitted by mosquito Aedes aegypti and the incidence is strongly influenced by temperature and humidity which vary seasonally. To assess the effects of temperature on dengue transmission, mathematical models are developed based on the population dynamics theory. However, depending on the hypotheses of the modelling, different outcomes regarding to t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bio Systems

دوره 126  شماره 

صفحات  -

تاریخ انتشار 2014